skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pressé, Steve"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. We study the hydrodynamic coupling of neighboring micro-beads placed in a multiple optical trap setup allowing us to precisely control the degree of coupling and directly measure time-dependent trajectories of entrained beads. We performed measurements on configurations with increasing complexity starting with a pair of entrained beads moving in one dimension, then in two dimensions, and finally a triplet of beads moving in two dimensions. The average experimental trajectories of a probe bead compare well with the theoretical computation, illustrating the role of viscous coupling and setting timescales for probe bead relaxation. The findings also provide direct experimental corroborations of hydrodynamic coupling at large, micrometer spatial scales and long, millisecond timescales, of relevance to, e.g., microfluidic device design and hydrodynamic-assisted colloidal assembly, improving the capability of optical tweezers, and understanding the coupling between micrometer-scale objects within a living cell. 
    more » « less
  3. Bdellovibrio bacteriovorus is a predatory bacterium preying upon Gram-negative bacteria. As such, B. bacteriovorus has the potential to control antibiotic-resistant pathogens and biofilm populations. To survive and reproduce, B. bacteriovorus must locate and infect a host cell. However, in the temporary absence of prey, it is largely unknown how B. bacteriovorus modulate their motility patterns in response to physical or chemical environmental cues to optimize their energy expenditure. To investigate B. bacteriovorus’ predation strategy, we track and quantify their motion by measuring speed distributions as a function of starvation time. While an initial unimodal speed distribution relaxing to one for pure diffusion at long times may be expected, instead we observe a bimodal speed distribution with one mode centered around that expected from diffusion and the other centered at higher speeds. What is more, for an increasing amount of time over which B. bacteriovorus is starved, we observe a progressive reweighting from the active swimming state to an apparent diffusive state in the speed distribution. Distributions of trajectory-averaged speeds for B. bacteriovorus are largely unimodal, indicating switching between a faster swim speed and an apparent diffusive state within individual observed trajectories rather than there being distinct active swimming and apparent diffusive populations. We also find that B. bacteriovorus’ apparent diffusive state is not merely caused by the diffusion of inviable bacteria as subsequent spiking experiments show that bacteria can be resuscitated and bimodality restored. Indeed, starved B. bacteriovorus may modulate the frequency and duration of active swimming as a means of balancing energy consumption and procurement. Our results thus point to a reweighting of the swimming frequency on a trajectory basis rather than a population level basis. 
    more » « less
  4. Abstract Telomeres terminate with a 50–300 bases long single-stranded G-rich overhang, which can be misrecognized as a DNA damage repair site. Shelterin plays critical roles in maintaining and protecting telomere ends by regulating access of various physiological agents to telomeric DNA, but the underlying mechanism is not well understood. Here, we measure how shelterin affects the accessibility of long telomeric overhangs by monitoring transient binding events of a short complementary peptide nucleic acid (PNA) probe using FRET-PAINT in vitro. We observed that the POT1 subunit of shelterin reduces the accessibility of the PNA probe by ∼2.5-fold, indicating that POT1 effectively binds to and protects otherwise exposed telomeric sequences. In comparison, a four-component shelterin stabilizes POT1 binding to the overhang by tethering POT1 to the double-stranded telomeric DNA and reduces the accessibility of telomeric overhangs by ∼5-fold. This enhanced protection suggests shelterin restructures the junction between single and double-stranded telomere, which is otherwise the most accessible part of the telomeric overhang. 
    more » « less